RELATION BETWEEN THE DESICCATION RATE AND
THE BODY TEMPERATURE IN THERMOGRAPHIC STUDIES

V. M, Kazanskii UDC 66.047.31

An equation has been derived and experimentally verified for calculating the evaporation
rate from a known thermogram, or vice versa, taken under conditions of thermographic
testing.

Thermographic test methods, including the desiccation thermogram [1] and the differential thermal
analysis [2], are mass transfer methods, i.e., methods based on the laws of heat and mass transfer bet-
ween a specimen and the ambient medium under some given conditions. As a rule, mass transfer (evapora-
tion) is the predominant process here and the temperature curves represent its trend [3]. For numerical
computations related to thermographic analysis, therefore, it is most convenient to use the desiccation-rate
curve (the derivatogram), although its direct and sufficiently accurate recording during a test is very dif-
ficult {4]. Recording the specimen temperature (the thermogram) during a test is much simpler and more
accurate. It thus becomes necessary to establish a relation between the thermogram and the derivatogram
which would allow one to compute derivatograms from known thermograms and vice versa.

We will first consider the simplest case: desiccation by the thermogram method. As is well known,
the liquid evaporates here from the specimen at a constant ambient temperature, and the thermogram re-
presents the temperature difference AT between the specimen (Ty) and the ambient atmosphere (Ty) as a
function of time. The heat supplied to a specimen by way of heat transfer is spent on evaporating the liquid
and raising the temperature of the specimen:

aSAT — L %”l - (g, + om) L 1)
T

dr

This equation of heat balance does, in principle, relate the thermogram to the derivatogram. Until
now, however, this equation has not been used for derivatogram computations, under the impression that
the heat transfer coefficient o, being a function of the moisture content in the gpecimen as well as of the
desiccation rate, would be rather difficult to either measure or calculate. Meanwhile, as will be shown
here, during a thermogram recording the heat transfer coefficient o remains almost independent of both
the moisture content and the desiccation rate. The other coefficients in Eq. (1) depend also negligibly
little on the moisture content. To the first approximation, therefore, one may treat Eq. (1) as one with
constant coefficients. On such a basis, as will be shown here, a derivatogram can be computed from a
thermogram accurately within 3-7%, which is comparable to the usual accuracy of direct derivatogram
measurements.

The fact that & depends neither on the evaporation rate nor on the moisture content, as has been
established by the author in his experimental study [5], agrees with the conclugions of other authors [6].
Indeed, it has been shown in [7, 8] that the increase in o during the evaporation of a liquid from capillary-
porous bodies is related not to an additional transfer of heat due to vapor diffusion (this is a small amount)
but to a depending of the evaporation zone to the drop in moisture content and also to the errors in the
measurement of the true surface temperature. As a consequence, to the thermal resistance of the boundary
layer, which determines the magnitude of &, there is added the thermal resistance of a dry layer between
the specimen surface and the evaporation zone, resulting in an apparently higher measured value of a.

When those factors are insignificant, on the other hand, « appears only slightly dependent on the desiccation
rate. It has been shown in [9], for example, that during evaporation from the free surface of the liguid o

Institute of Engineering-Construction, Kiev. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol
24, No. 2, pp. 302-308, February, 1973. Original article submitted July 6, 1972,

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 1001 1. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for 315.00.

217



remains almost constant while the evaporation rate varies through a factor of 7-8.

During thermographic tests one usually maintains special conditions. They are always performed in
the "soft” mode so as to keep the temperature gradients inside the specimen small and thus to improve the
accuracy of temperature measurements at the surface. Furthermore, the thickness of a test specimen does
not exceed 1-2 mm and, for this reason, the added depth of the evaporation zone is always much smaller than
the thickness of the boundary layer, which during natural convection may be of the order of a few centi-
meters. Such test modes are required in the application of the thermographic methods, but they also
ensure that ¢ will, within test accuracy, depend negligibly little on the external mass transfer. In this way,
the constancy of o (within 2-5%) during our thermogram—desiccation tests is now theoretically justified.

In order to use Eq. (1) for computations, one must know the three coefficients in it: L depends only
on the kind of the evaporating substance and can easily be found in tables; the heat capacity cm + comy is
made up essentially of the heat capacity of the vessel with the temperature probe com,, constant for a given
experiment but different from one experiment to another., The heat transfer in the specimen aS depends
on the test conditions: temperature, pressure, and air velocity near the surface. Thus, in order to use
Eq. (1) for computations, it becomes necessary to measure aS in each test mode and to measure the heat
capacity cym, once for a given experiment.

The simplest way to determine «S is during the initial test period, when excess free liquid evaporates
above the specimen surface. The evaporation rate (dm/dr), and the temperature difference AT, are then
constant. From (1) we find now
' L [dm

oS = ( )0 . (2)

AT, \ dv

Since the evaporation rate is constant, it can be measured quite accurately by plain weighing (without plot-
ting the mass curve) and thus determining the loss of mass Am; within a sufficiently long period of time
ATy This yields

oS = LAm, . 3)
AT A,
Inserting into (1), we obtain
dm Am, comy +-cem  dT
“E e ST A7 DT O
& aaAr, T L & )

Determining the heat capacity of the vessel ¢gm, requires only one evaporation test with the pure liquid such
as water, for example. The evaporation rate is first constant, then drops sharply, and finally remains
equal to zero. For the last stage we have

aSAT + cymy 4T _ g, )
dt
The solution to this differential equation is
AT = Aexp {_ oSt } . 6)
ColMy
From here
InAT =1nA— 25 -
CofTy

The slope of the last thermogram segment in semilogarithmic coordinates InAT, T yields aS/cym). The
magnitude of a8 for a given test mode is found from the first stage of the test, as shown earlier. Thus,
comy is determined from a single evaporation test with pure water. The heat capacity of the specimen cm
must be calculated separately, however, but this may be done very roughly, inasmuch as cm is usually not
greater than 10-20% of ¢cymy. In order to check this entire procedure, evaporation tests with pure water
were performed under various conditions: at 320°K and at 380°K. As a result, the last segments of the
thermograms in InAT, 7T coordinates were found to be straight lines (within test accuracy). The heat capa~
city com, calculated from these curves was the same within 2%, although a§ differed by as much as a factor
of 2.

The validity of Eq. (4) for calculating the evaporation rate has been established by a test set up as
shown in [10, 11]. The evaporating liquids were water, methyl alcohol, and benzene. Two specimens of
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Fig. 1. Kinetic curves obtained by recording the desiccation
thermograms for: (a) fine-porosity silica gel moistened with wa-
ter, (b) coarse-porosity silica gel moistened with water, (c) ce-
ment moistened with methyl alcohol. AT (°K) (1), dT/dr( 10°CK
/sec)) (2), dm/dr(- 108(kg/sec)) (3), K (dimensionless) (4). Test
time T(- 1072 sec).

silica gel with different porosities and a concrete specimen served as the disperse phase. Formula (4}

was verified under various conditions. It is well known that a increases with increasing air pressure, with
rising temperature of the specimen, and with higher velocity of the ventilating air [12, 13], For this reason,
the measurements were performed at low air temperatures and pressures (T = 320°K, p = 2.5- 10% Pa) as
well as at high temperatures and pressures (T = 380°K, p = 10° Pa). The velocity of ventilating air in the
temperature-—pressure chamberof the test apparatus was alsc higher in the second mode.

The desiccation thermogram AT(T) was recorded together with the mass curve m(7). The latter was
plotted to a very large scale [11]: the chart sensitivity reached 0.3 mg/mm toward the end of the test, when
the total change in mass amounted to about 4 g, and this ensured a quite reliable computation of the derivato-
gram.

Typical results of these measurements and calculations are shown in Fig. 1. Curves 1 represent the
desiccation thermograms, curves 2 represent the rate of temperature change, and curves 3 represent the
evaporation rate. The solid curves 3 were obtained by test, while the points were calculated according to
Eq. (4). Curve 4 represents the ratio of heat spent on raising the specimen temperature to total heat sup-
plied (this will be discussed later). According to the graphs, the calculated values agree closely with the
measured derivatogram (within a 3-7% error). The calculated values deviate from the measured ones on
the high side as well as on the low side, which indicates that the error is a randomone and probably due to
inaccurate measurements of temperature and evaporation rate. The calculated derivatogram concurs
with the measured one throughout the entire test range, at both high and low evaporation rates. For in-
stance, the calculated derivatograms for silica gels rise slowly after the first drop (Fig. 1a, b), just as
the measured curves.

Thus, the results indicate that Eq. (4) with constant coefficients does relate the derivatogram to the
thermogram within an error not greater than 3-7% and, therefore, is entirely suitable for computations.

On the basis of Eq. (1) one can also solve the reverse problem, namely compute the desiccation ther-
mogram from a known derivatogram. Indeed, Eq. (1) for AT is a linear differential equation with constant
coefficients. Its solution is [14]

AT = AT exp |— F5F }H Ldm op (25T }dr +a]. (8)
i cymy cm, dr Loy, ]

Although it is much easier during a test to record the thermogram than the derivatogram and although it
usually is not necessary to compute the thermogram from a known derivatogram, Eqgs. (8) and (1) are of
interest as means for a complete analysis of the characteristic ranges of thermograms and derivatograms.
Such an analysis is important especially with regard to the straight segments of desiccation thermograms,
which are singled out for a study of the forms of bond between liquids and disperse materials {1]. Letus
consider this problem more thoroughly.

The thermogram will be represented in terms of a power series
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i=n

AT = Yagd. 9)
i=0
Then, according to (1), the evaporation rate becomes
dm__ Ei (@ST + icym ). (10)
dr L

==

It is easy to ascertain by a simple substitution that to a linear segment on the thermogram

AT =ay+a,T (11)
there corresponds a linear segment on the derivatogram
dm ( aSa,

a

-+

cymya, aSa,
T
L L ) +

7 (12)

To a parabolic segment on the thermogram there also corresponds a parabolic segment on the derivatogram,
with the respective second derivatives, which determine the direction of curvature, having the same signs
on both diagrams:

FAT) _, . d (’iﬂz):%i (13)

FEE e s L ®

In other words, a convex segment on the derivatogram always corresponds fo a convex segment on the
thermogram. If the latter is represented by a polynomial of a higher than second degree, however, then
the convex and the concave segments on the derivatogram may not correspond to those on the thermogram.

Solving the reverse problem on the basis of Eq. (8) is more difficult. If the derivatogram is re-
presented in terms of a power series
n
dm _ Ebiﬁ , (14)
dv

i=0

then inserting (14) into (8) yields

n
AT = E gt + 4, exp{——

i=0

aSt }

SULT

(15)

where gj are constant coefficients. The first term in (15) is a polynomial of the same degree as in (14).
The second term in (15) represents a "drag" in the thermogram following a sharp change in the evaporation
rate. The magnitude of this texm depends on the heat capacity of the vessel with the specimen ¢ym; and
can generally be appreciable.

For illustration, curves 4 in Fig. 1 represent the coefficient

= G dar . (16)
aSAT dt
This coefficient indicates what fraction of the heat supplied fo a specimen is spent on raising the tem-
perature of the latter. These graphs indicate also that the term which accounts for the heat capacity of a
specimen is very significant, especially at low evaporation rates (toward the end of the test), and may not

be disregarded.

It has been shown in [4] that the shape of a desiccation thermogram for typical disperse materials is
the same as the shape of the respective derivatogram. The preceding analysis of Egs. (1) and (8) confirms
this concidence in time between the respective linear segments on both diagrams. There is no exact pro-~
portionality beitween them, however, so that segments of higher-degree curvatures must be different on
both diagrams. ’

With the aid of Eq. (4) one canh also compute the mass curve for a specimen from its thermogram.
Indeed, integrating (4) yields

Am c,m
mt) = 0 ATdv — 1L AT,
® AT AT, ) g L (17

In order to compute the mass curve according to formula (17), it is necessary only to measure the loss of
mass Am, within a sufficiently long period of time AT at the beginning of the test (during the evaporation
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of free liquid), This can be done by means of plain (not recording) scales. Thus, the application of formula
(17 makes feasible, in principle, a thermographic analysis on the basis of the desiccation thermogram
without direct recording of the mass curve.

We will now consider testing by differential thermal analysis. In this case the test specimen 1 and the
inert (not changing throughout the test) specimen 2 are both placed in a medium whose temperature T, rises
linearly with time. The thermogram here represents the temperature difference between tfest specimen
(Ty) and inert specimen (T,). In the light of the earlier discussion, one can write for both specimens:

o S(Ty—To) =L, am + ey dd:l ) (18)
@Sy(Ty—Ty) = Ly dLZZ = Cyitty d;;z . (19)

The inert specimen is usually selected so that the surface and the heat capacity of both specimens be the
same, with also equal heat transfer coefficients. Then, subtracting (19) from (18) and considering that
the mass of the inert specimen remains constant, we have
a,SAT =L, dm, d{AT)
dr

This equation is identical in form to Eq. (1), but AT has a different meaning here. Conseguently, Eq. (1),
or the identical Eq. (20), is within a narrow temperature range valid not only for the thermogram mode but
also for the differential thermal analysis of desiccation, When desiccation for a differential thermal analy-
sis covers a wide temperature range, then Eq. (1) remains valid but its coefficients can no longer be con-
sidered constant and, therefore, computations become more unwieldy. Nevertheless, in this case too

Eq. (1) is quite useful as a basis for distinguishing on kinetic diagrams between the evaporation of volatile
components from a specimen and other phase transformations (e. g., recrystallization).

4 ey

(20)

Thus, we have established a quantitative relation between the thermogram and the derivatogram of a
desiccation process, making it possible to completely compute any one of these curves when the other is
known.

NOTATION

is the specific heat;
is the integration constant;
i» bj» g8  are the constant coefficients in the T and dm/d7 series expansions.

o is the coefficient of external heat transfer;
S is the surface area of the specimen;

T is the temperature;

L is the latent heat of evaporation;

T is the time;

m is the mass;

c

A

3]

LITERATURE CITED

1. M. F. Kazanskii, Dokl. Akad. Nauk SSSR, 130, No. 5, {1960).

L. G. Berg, Introduction to Thermography [in Russian], Izd. Akad, Nauk SSSR, Moscow (1961},
3. V. M. Kazangkii, in: Proc. Fourth All-Union Confer. on Heat and Mass Transfer [in Russian],
Minsk (1972).

4. V. M. Kazanskii and L. N. Belyi, Inzh. Fiz. Zh., 7, No. 12, 66 (1964).

5. V. M. Kazanskii, in: Structural Thermophysics [in Russian], Izd. ﬁnergiya, Moscow (1966).

6. P. N. Romanenko, V. N. Kharchenko, and Yu. P. Semenov, Inzh. Fiz. Zh., 9, No. 6, 816 (1965).
7. A. V, Lykov, Inzh. Fiz. Zh., 5, No. 11, 12 (1962).

8, A. V. Lykovand G. V. Vasil'ev, Inzh. Fiz. Zh., 14, No. 3, 395 (1968).

9. V. I. Balakhonova, Inzh. Fiz. Zh., 12, No. 1, 3 (1967).

10. M. F. Kazanskii, R. V. Lutsyk, and V. M. Kazanskii, in: Heat and Mass Transfer in Disperse

Systems [in Russian], Izd. Nauka i Tekhnika, Minsk (1965).
11. M. F. Kazanskii, R. V. Lutsyk, and V. M. Kazanskii, Inzh., Fiz. Zh., 11, No. 5, 587 (19686).
12. K. R. fickert and R. M. Dreick, Introduction to the Theory of Heat and Mass Transfer [Russian
translation], Izd. GEI, Moscow (1961).

221



13. P. A. Novikov and V. A. Solov'ev, in: General Problems in Heat and Mass Transfer [in Russian],
Izd. Nauka i Tekhnika, Minsk (1966).
14. M. Ya. Vygodskii, Handbook of Higher Mathematics [in Russian], Izd. Nauka, Moscow (1966).

222



